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The problem of finding a physically realizable, i.e.
constant gain, output-feedback controller which will
stabilize an unstable plant is one of the oldest and
most fundamental problems in control theory. In spite

of its long history, this problem still remains unsolved

even in the seemingly simple case of linear plants.

In this paper, an iterative procedure for determining

the constant gain matrix that will stabilize a linear
constant multivariable system using output feedback is
described. The use of thieg procedure avoids the trans-
formation of wvariables which is required in other procedures.
For the case in which the product of the output and input
vector dimensions is greater than the number of states of
the plant, we are able to give & rather general sclution.

In the case in which the states exceed the product of

input and output vector dimensions we are able to present

a least sguare solutlion which may not be stable In all cases.

The results are illustrated with examples.



1. TNTRODUCTION

The design of linear multivariable control systems using output
feedback has attracted the attention of many authors EDavison 1970,
Fallside and Seraji 1971, Sridhar and Lindorff 1973, Fortmann 1973,
Seraji 1973, and others]. There are two ways of approaching this
problem. The first method consists of estimating the states of the
system using an observer and using these states in the subsequent
design. In the second approach, either static or dynamic feedback of
the output is used directly in the control problem and this view is
adopted here.

Most of the techniques discussed in the literature for approach
two reguire the system matrix to be transformed toc a canoniecal form
which may cause some loss of physiecal insight. This paper describes
an iterative procedure for determining the constant gain matrix that
will stabilize a linear constant multivariable system using cutput
feedback gains without the necessity of transforming variables wpile
achieving a satisfactory degree of stability and dampiﬁg ratio.. }he
resultant contrel problem is a&lgebraic and hence easy to solve.

2. TROBLEM STATEMENT

Consider a linear time-invariant controllable and observahle
system

x(t) = A x(t) + Bu(t)

i

(1)
y(t) = ¢ x(t)

where the state x, input u and cutput y have dimensions n, m and
p, respectively. The output feedback control law is given by

u(t) = ¢ y(&) | (2)



where G 1is a constant mxp feedback gain matrix. Direct substitution

of (2) in (1) yields

x(t) = ‘A + BOC) x(t)
(3)

v{t) = ¢ x(t)

The stability of (2} depends primarily on the eigenvalues ﬁf A + BGC.

If all the eigenvalues have real parts strictly less than -v for

v > 0, then the system will be sald to have degree of stability v. The
damping ratio of a stable complex eigenvalue is defined as the cogine of
its angle with the negative real axls, and is a2 measure ¢f how oscillatory

the trajectory will be. The eigenvalues.of A are determined from

la - MIL=0,1=1,2,....,n (1)

With these basic definitions the next section outlines the procedure
for distinct eigenvalues.

3. PROCEDURE FOR DISTINCT EIGENVAIUES

Assume for the time being that the system to be controlled has
distinct eigenvalues. I the system matrix A varies to A + &A,;then

the corresponding variation in the eigenvalue is given by [Rosenbrock 1965]

51r _ Lrace EQAfBA] | (5)
trace [Q]
where
n
Q=TT (A-I) (6)
i=1

ifr
From eguation (5) it is possible to write an expression for ®A in

terms of B, If we assume that BA fesults due to the output Teedback



of egquation (2) with the gain matrix denoted by BG then
BA =B - Bg - C (1)
By substituting equation (7) in (5) and simplifying it is possible to

write a linear equation for the elements of the gain matrix as

mp |
Z Lex [E)Gij] = 8h, tr tlyr-12,....n (8)

k=1
where SGij iz the ijth element of the matrix ®G. 8Since there are
n distinct eigenvalues, there are n Iindependent equations. It is

thus possible to write the overall equation as

Prog=vV ‘ (9)
where P 1is & known matrix of order n x mp, g 1s the mp vector
corresponding to the unknown elements of the gain matrix and V 1is a
known constant of order n. Since the equation (5} is only valid for
small perturbations, variaticns in the eigenvalueé are applied in small
steps in the desired direction to compute Bg. An iterative prgeedure
in which the gain elements were computed in small steps to achieve a

degired degree of stability and damping ratio was developed and tested on

several example problems.

Since the P matrix is of order nxmp, the solution of the unknown
mp vector ©g depends primarily on the relative magnitude of mp and
n. Hence some special cases of interest are trested below:

(i) mp = n: The computation of the gain matrix is unique for &
particular problem. In this case P of equation (9) is a square matrix

of order n and the computation of the gain matrix is given by



dg = P TV (10)

(ii) mp > n: In this case (mp - n) elements of the gain matrix
may assume arbitrary values and the remaining n elements are computed'
as above.

{iii) mp < n: 1In this case we have more equations than the unlkunowns

and the best possible solution is the least square solution of (9) namely,
Bg = (PTP)'lPTV (11)
However, a stable output feedback is not guaranteed for gain elements
computed this way.
A simple necessary condition proposed by Seraji (1973) gives a method

to check whether the outpul feedback gains will stabilize the unstable

plant or not.
. PROCEDURE FOR MULTIPIE EIGENVALUES
The previous section illustrates the procedure for computing the

gain matrix for the case in which the eigenvalues are distinct.
Difficulty occurs for multiple eigenvalues because equation (5) is then
indeterminate. One solution is to differentiate both the numermtor and
denominator terms of equation (5) with reépect to the multiple eigenvalue
and use this expression in place of equation (5). The feedback gain per-
turbations are computed as before. Then using the newly computed gain
matrix, the true eigenvalues of the closed loop system matrix sre
computed. It has been observed that the true eigenvalues often differ
from the expected eigenvalues; however, the sum of the changes in the

true elgenvalnes is nearly equal to the sum of the perturbgtions
requested in the eigenvalues. When this happens, the true eigenvalues
are then distinct and the procedure illustrated in the last section mey

be followed.



5. EXAMPIES

With these theoretical background it is possible to write a
computer program. However, because of the complexify of handling
complex matrix operations it is not possible to write a general program.
Some af the examples are illustrated below:

Example 1: mp = n, distinet eigenvalues. Consider the system given

by eguation (1) with

. o o o]
P I o o (12)
o 0 -3 0
o 0 0 -4
1 0"
0 1
B = - (13)
1 0 .
1 1
1 1 o o
¢ = (1h)
o o 1 1

Using the program to place the poles to the left of -1 line, the gain

matrix using ocutput feedback is given by

L.oe 0

G = o . ' (15)
-0,



and the closed loop system has the following eigenvalues:

=l =3 <1.00%3; -1.0050
Example 2: - mp > n, distinet eigenvalues. In the previous example
change the B matrix to

1 o 0]
0 1 0
B = (16)
0 ) 1
1 1 1

The gain matrix obtained to place the closed loop poles to the

left of -1.0 1ine then is

" 4.0378 0.0935

6= |-9.047  -0.029h (17)

Q.03 0.0

N

with the last two elements of the third row chosen arbitrarily and the

closed loop poles are
~4.000118; «3.0:-1.00448; <1.001543

+

Example 3¢ mp < n, distinct eigenvalues. Consider the examples with

[0 1 0

A=1{oO 0 1 (18)
1 0 0
Th

B= |1 (19)
-..O-J




(]
il

(20)

The open loop poles are at

1.0: -0.5 + 3 0.866025
Using the above procedure the least square solution for the gain matrix
being

G = [-2.7077  -b.0%e1]
the closed loop poles are

0.135627; -2.11386k + j 1.704338.
Note that the least square solution does not stabilize the overall
system. As illustrated before, the sign criterion proposed by Seraji
fails and hence stabilization by means of output feedback matrix is
not possible for this problem.

Example h: mp = n, multiple eigenvalues. Consider the system

(.3 0 0 o] ! o)
0 -2 0 0 0 1
x(t) = x(t) + u(t) (21)
0 0 1 0 1 -1
| o 0 0 1] 0 1]
1 0 1 0
y(t) = x(t) (22)



The open loop poles has one unstable double pole. Using the procedure
given in section 4, the gain matrix obtained being

=5, BUTE -4.35
o = (23)

. LOOT 2,607
and the closed loop poles are

-3.0053; ~1.9242; =1.00013; -0.996Lo6
6. CONCIUSIONS

In summary, for a controliable, observable gystem an iterative
technique to determine the constant gain .matrix that will stabilize
a linear constant multivariable system using cutput variable feedback
is presented. The method consists of adjusting iteratively the
unstable eigenvalues in a desired direction to achieve a satisfactory
degree of stability and damping ratio. From the development of the
procedure it may be seen that the method has the advantage that is
not necessary to transform variables and thereby lose physical signifiw
cance. The resultant control problem also is algebraic and simple to
compute.
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